Ispitivanje zaštitnog releja ABB REF 615

1. Zaštitni relej ABB REF 615

ABB REF615 je mikroprocesorski uređaj namenjen za zaštitu, upravljanje, merenje i nadzor u distributivnim i industrijskim mrežama sa radijalom i petljastom konfiguracijom, sa ili bez distribuirane proizvodnje električne energije. Relej obezbeđuje glavnu zaštitu za nadzemne i kablovske vodove distributivne mreže. Relej se takođe koristi kao rezervna zaštita, tamo gde je potreban nezavisan i redundantni sistem zaštite. Na Slici 1 prikazan je relej REF 615.

Slika 1: Relej REF 615

Relej REF 615 pripada digitalnoj generaciji zaštitnih uređaja, pa shodno tome, može obezbediti više zaštitnih funkcija kao što su:

- kratkospojna (PHIPTOC1)
- neusmerena prekostrujna (DPHLPDOC1-non directional)
- usmerena prekostrujna (DPHLPDOC1-forward)
- neusmerena zemljospojna (EFLPTOC1)
- usmerena zemljospojna (DEFLPDEF1)
- termička zaštita (T1PTTR)
- prenaponska (PHPTOV1)
- podnaponska (PHPTUV1)
- zemljospojna (ROVPTOV1)

Najjednostavnija zaštita koja je realizovana u svrhu zaštite vodova je neusmerena prekostrujna zaštita sa definisanim vremenom reagovanja. Ona se ogleda u jednostavnosti kako samog rada, tako i implementacije. Ukoliko se javi struja koja je veća od podešene vrednosti, relej će isključiti vod. Mana ovakve zaštite je njena primena samo u radijalnim mrežama i povećanje vremena isključenja kvara sa primicanjem mesta kvara izvornoj tački, odnosno jakoj mreži. Drugi nedostatak je prevaziđen prekostrujnom zaštitom sa inverznom karakteristikom. Logika rada ove zaštite je da se vreme isključenja kvara smanjuje ako se

struja kvara povećava. Glavna mana ovakve zaštite je njena neprimenljivost na kratkim deonicama. Da bi se prevazišlo ograničenje upotrebe prekostrujnih zaštita samo u radijalnim mrežama, uvedeni su usmereni prekostrujni releji. Smer struje se određuje na osnovu referentne veličine, a to je najčešće napon. Iako je upotreba ovakve zaštite proširena na dvostrano napajane vodove, ipak se ne može obezbediti selektivnost u petljastim, višestrano napajanim mrežama.

2. Podešavanje zaštite

Relej REF 615 podržava tri načina podešavanja:

• LHMI (*Local human - machine interface*) podrazumeva ekran, tastere, LED indikatore i komunikacione portove. Iznad displeja se nalaze 3 LED idnikatora: *Ready, Start* i *Trip,* koji ukazuju da je relej spreman za rad, pobuđen i reagovao, respektivno. Tastatura sadrži tastere koji se koriste za kretanje kroz meni. Preko tastera se može izvršiti podešavanje parametara releja.

• WHMI (*Web Human Machine Interface*) omogućava korisniku pristup IED-u (*Inteligent Electronic device*) putem internet pretraživača. WHMI nudi nekoliko funkcija, među kojima su: indikacije alarma i liste događaja, nadzor sistema, podešavanja parametara, prikaz merenja, oscilografski zapisi, fazorski dijagram.

• Treća opcija za podešavanje, nadzor i upravljanje relejima je preko softverskog paketa PCM600 (*Protection and Control Menager*) koji nudi sve neophodne alate za rad sa intelignetnim elektronskim uređajima. Direktna komunikacija između ovog softvera i inteligentnog uređaja ostvaruje se povezivanjem računara sa tim uređajem putem LAN kabla.

U vežbi će biti korišćen treći način podešavanja releja, putem PCM 600 softverskog paketa. Na Slici 2 prikazano je okruženje softvera PCM600. Sa leve strane, nalazi se organizaciono stablo (Plant Structure). Desnim klikom na oznaku releja u stablu (REF 615) i odabirom opcije Parameter Settings, otvara se prozor pomoću koga se vrši podešavanje parametara za odgovarajuće zaštite.

Local Server\BASTEEN -	PCM600							0 6
File Edit View To	ols IED Window Help							
0 📽 🖬 🚳 🐰 🖻		🗈 🖻 Visible parameters	· 4 = E 🚹					
Common Read/Write								* 9 X
Delete Read Write IED	Status Comment							Report
🗙 🗹 🕅 REF6	15 Success							
Object Types • # X	Project Explorer 💌 🕈 🗙	REF615 - Parameter Settin	9	0.000				- 4 Þ X
General 🛠	Plant Structure	Group / Parameter Name	IED Value	PC Value	Unit	Min	Мах	<u>^</u>
Generic IEC61850 IED	B- BASTEEN	PHHPTOC1: 1				Constant of the		
Feeder IEDs 2	□	v 3bs(1)						
	B- B AH40	v Operation		on				E
	B - P IED Configuration	 Num of start phases 		1 out of 3				
	- Po Application Configuration	 Minimum operate time 		20	ms	20	60000	
	Image: Big Setting group	 Reset delay time 		20	ms	0	60000	
	Protection: 0	 Measurement mode 		DFT				
	Unrent protection	V Curve parameter A		28.2000		0.0086	120.0000	
	- D EFIPTOC1: 1	 Curve parameter B 		0.1217		0.0000	0.7120	
	C EFLPTOC1 1	 Curve parameter C 		2.00		0.02	2.00	
	- D EFLPTOC2.2	Curve parameter D		29.10		0.46	30.00	
		 Curve parameter E 		1.0		0.0	1.0	
	PHHPTOC2: 2	 Setting Group 1 		The second	۲	-	and the second second	
	- 0 NSPTOC1: 1	 Start value 		1.00	xin	0.10	40.00	
	- D NSPTOC2 2	 Start value Mult 		1.0		0.8	10.0	
	O PDNSPTOC1: 1 O Voltage protection	 Time multiplier 		1.00		0.05	15.00	
	B — Ph Frequency protection	 Operate delay time 		500	ms	40	200000	

Slika 2: Podešavanje zaštite posredstvom PCM 600

Putanja u stablu kojom se dolazi do svih zaštita je sledeća:

Projekat/Substation/Voltage Level/Bay/REF615/Aplication Configuration/Settings

Obeležavanjem imena odgovarajuće zaštite otvara se mogućnost za podešavanje iste pomoću prozora Parameter Settings. Prva opcija za svaku zaštitu je da se ona omogući ili ne omogući izborom *On* ili *Off*.

3. Ispitni kofer KOKOS

Pod održavanjem relejne zaštite, podrazumeva se i njeno redovno testiranje i ispitivanje. U tim situacijama, element koji se štiti (dalekovod, transformator, generator, ...) mora biti isključen sa mreže.

Analogni ulazi do kojih dolaze veze iz strujnih i naponskih transformatora ostaju otvoreni, a na te ulaze dovode se signali iz ispitnog kofera. Ispitni kofer generiše strujne i naponske signale i time se proverava da li relej ispravno reaguje za date vrednosti modula i faznih stavova struja, odnosno napona. Jedan takav kofer, proizvod firme KOCOS-Artes 460, prikazan je na Slici 3.

Slika 3: Uređaj za ispitivanje relejne zaštite KOCOS-Artes 460

Uređaj se može podešavati lokalno, ali i daljinski pomoću računara i odgovarajućeg softvera ARTES. Na Slici 4 prikazano je početno okruženje u softveru Artes, a na Slici 5 okruženje u toku rada kofera.

*	• 🐻 🖗 🗧				Test results	Default [Job: 2022-04-04 15:42] - ARTES - 👼 🗄
Sta	rt Test Obje	e Test Sy	stem Configuration	View Tool	s Properties	
		À 🖌	New Test Step 👻	G 🗘) 🚰 🔮 🗌	
Monitors Explo	orer Start V	/D Monitor	New Static Output	To Test Outp	t Edit Control	
* View	(Test	(Static) -	Test Ste	Plan Plan	Test Settions	
Channels				2		
Engineer	Dell	in close		- J	^	Views CF Alassa
Frequency	OD Ha	ta steps				View • 🕤 : None •
JU.			0.000 V	Δ0	0.000 V	113(1) 120
All outputs	ΔΙ		0.100 A	ΔI	0.000 A	120'
	Δφ		0.00 °	Δφ	0.00 °	
	Δf		0.00 Hz	Δf	0.00 Hz	90'
Model: Non	e + Fault: None	e •		-		
	Signal	~	Magnituda 🚖	Angle 🚖 Ere		57.74
E Eperavsv	tem: '1st System'					
✓ U1	UL 1-N (1)	≈	57.740 V 📰	0.00 ° 🕅	50.00 Hz 📄 🗏	
☑ U2	UL2-N (1)	~	57.740 V 📃	-120.00 ° 🔳	50.00 Hz 🔳	
✓ U3	UL3-N (1)	~	57.740 V 📄	120.00 °	50.00 Hz	
V 11	IL1(1)	~	1.000 A 🔽	-120.00 *	50.00 Hz	
V 12 V 13	IL3 (1)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.000 A	120.00 °	50.00 Hz	
					•	
Line line volta	iges	Symetric	components	Displacement	values	57.74
0	Signal		Magnitude	2 🔷	Angle 🔶	270
Energysys	tem: '1st System'					
U1,U2	UL1-N (1)-UL2-N	N (1)	1	00.009 V 📄	-150.00 °	UL2-N (%)
U3.U1	UL3-N (1)-UL3-N	v (1) v (1)	1	00.009 V	-30.00 °	1201
12:19:52 PI	M → Ready					👔 DC Aux. 🥥 Test system: 🥚 🕘 🥵 korisnik 🛩 📆
م 🗉	Type here to	o search		O E	0	💼 🖻 😼 👩 🔤 🕄 👘 😨

Slika 4: Osnovno okruženje u ARTES softveru

æ								Def	ault [.	Job:	b: 2022-04-04 15:42] - ARTES	- • ×
Tes	t running											- 🖉
			📑 Ste	ps: 6								
		' <u>^</u>	# 13,	949 s (8,698 s)								
Monitors Explo	rer Stop	,	٩			_						
View				Test								
Channels									-	*	Diagram Progress Measurements	
Frequency		Delta ste	ps									
50.	00 Hz	ΔU		0.000	v	Δυ		0.000 V				
All outputs		ΔΙ		0.100	A 1			0.000 A	₽			
		Δφ		5.0	0 •	Δφ		0.00 °				
		Δf 🔲		0.00	H7 🗸	> Af		0.00 Hz	▽			
		_						0.00 1.2			Δ 0.000 A	1.100 A
Model: None	e 🖌 Fault:	None •										
9 O	Signal		≅	Magnitude	\$	Angle	\$	Frequency	^ (•		
🖃 Energysys	tem: '1st S	ystem'										
V U1	UL 1-N (1	l)	~	57.740 \		0.0	0 ° 🕅	50.00 Hz				
✓ U2	UL2-N (3	L)	~	57.740		-120.0	0 • 🖻	50.00 Hz				
V I1	IL1 (1)	9	~ ~	1.100 A		200.0	0 * 10	50.00 Hz				
E 12	IL2 (1)		≈	1.000 A		-120.0	0 ° 🗉	50.00 Hz			FUp FDown	
🔲 I3	IL3 (1)		≈	1.000 A		120.0	0 ° 🗉	50.00 Hz	•			t/s
Long Bara staller						IC.				븱	A 0 2.5 5 7.5 10 12.5	13.821
Line line voita	ges		Symetric	components			Jispiace	ment values			▲	•
0	Signal				Magnitu	ide	?	Angle	9		Show analog output values	
Energysyst	tem: 1st Sy	stem				100.009 V		-150.00	•		Signal (4) (4)	
U2,U3	UL2-N (1)	-UL3-N (1)				100.009 V		90.00	•		Relay trip command	0.599 s
U3,U1	UL3-N (1)	-UL 1-N (1)				100.009 V		-30.00	• 🗉		2	
										1		
L												
12:26:42 PM	4 × Rea	dy				_					👔 DC Aux. 🔞 Test system: 🔴 🥥 🥥 🔮	🖇 korisnik 👻 🤫 👻
م 🗄	Type he	ere to se	arch				0	H 💽 📘			📑 🖻 🌆	26 PM 21/2022

Slika 5: Podešavanje inkrementa struje

Na Slikama 4 i 5 označena su najvažnija polja, neohodna za rad sa koferom:

- 1. startovanje kofera;
- 2. izbor i podešavanje napona i struja, odnosno njihovih modula i faznih stavova;
- 3. zadavanje inkrementa za struju, napon, ugao ili frekvenciju i
- 4. očitavanje vremena reagovanja zaštite.

4. Postupak pri radu

Potrebno je testirati sve konfigurisane funkcije na releju REF 615. Pri svakom testitanju, neohodno je da samo ta funkcija bude aktivna, a sve ostale treba da budu neaktivne.

• Testiranje kratkospojne zaštite (PHIPTOC1)

Osnovna podešenja u okviru zaštitne funkcije su:

- izbor praga reagovanja I_{0p}
- izbor vremena zadrške reagovanja
- izbor karakteristike reagovanja.

Potrebno je da zaštita radi sa definisanim vremenom reagovanja (Definite Time). To znači da će zaštita reagovati za isto vreme pri strujama većim od podešene vrednosti. Podesiti struju reagovanja na 2 A i vreme reagovanja 0.2 s. Podesiti da inkrement struje bude 0.1 A. Početi od 1.7 A i podizati struju dok relej ne odreaguje. Zapisati struju reagovanja releja. Izmeriti vreme reagovanja zaštite. Nacrtati karakteristiku reagovanja releja.

<i>I</i> reagovanja	t reagovanja

• Testiranje neusmerene prekostrujne zaštite (DPHLPDOC1-non directional)

Osnovna podešenja u okviru zaštitne funkcije su:

- izbor praga reagovanja I_{0p}

-izbor karakteristike reagovanja.

Izraz prema kome se računa vreme reagovanja je:

$$t_{ra\check{c}} = \frac{K}{\left(\frac{I}{I_b}\right)^k - 1}$$

U zavisnosti od karakteristike biraju se parametri *K* i *k*:

Tip karakteristike	Normalno inverzna	Veoma inverzna	Ekstremno inverzna
K	0,14	13,5	80
k	0,02	1	2

Podesiti normalno inverznu karakteristiku. Minimalna struja reagovanja releja treba da bude 0.5 A. Struju koja se zadaje koferom podesiti na 1 A. Izmeriti vreme reagovanja releja. Nakon toga, povećavati struju za po 0.5 A i meriti vreme reagovanja za svaku od tih struja. Rezultate upisati u Tabelu 1.

Tabela 1: Normalno inverzna karakteristika releja

<i>I</i> [A]			
$t_{mer}[s]$			
$t_{rac}[s]$			

Ponoviti postupak za veoma inverznu i ekstremno inverznu karakteristiku releja. Popuniti Tabele 2 i 3.

Tabela 2: Veoma inverzna karakteristika releja

<i>I</i> [A]			
$t_{mer}[s]$			
$t_{rae}[s]$			

Tabela 3: Ekstremno inverzna karakteristika releja

<i>I</i> [A]			
$t_{mer}[s]$			
$t_{ra\tilde{c}}[s]$			

Nacrtati jednu od tri izmerene karakteristike releja.

• Testiranje usmerene prekostrujne karakteristike (DPHLPDOC1-forward)

Osnovna podešenja u okviru zaštitne funkcije su:

- izbor praga reagovanja *I*_{0p}

- izbor vremena zadrške reagovanja

- izbor tri ugla kojima se definiše oblast reagovanja releja (*Characteristic angle, Max forward angle, Min forward angle*).

Na releju podesiti prekostrujnu zaštitu sa definisanim vremenom reagovanja (1 A i 1 s). Podesiti struju na koferu iznad praga reagovanja (1.2 A). Za podešavanje oblasti reagovanja usmerene zaštite, potrebno je definisati tri ugla: ugao karakteristike petlje kvara (*Characteristic angle*), maksimalni ugao za oblast reagovanja unapred (*Max forward angle*) i minimalni ugao za oblast reagovanja unapred (*Min forward angle*). Uglove treba podesiti na sledeće vrednosti:

Characteristic angle	Max forward angle	Min forward angle
60°	80°	80°

Na Slici 6 dato je objašnjenje za uglove iz prethodne tabele.

Inkrement ugla postaviti na vrednost od 1°. Početni ugao odgovarajuće struje postaviti na 30°. Smanjivati vrednost ugla dok ne dođe do reagovanja releja. Ponoviti postupak sa uvećavanjem ugla, ali za početni ugao uzeti -150°. Zabeležiti izmerene vednosti.

φ reagovanja za smanjenje	φ reagovanja za uvećanje

Slika 6: Definisanje oblasti reagovanja usmerenog releja.

• Testiranje neusmerene zemljospojne zaštite (EFLPTOC1)

Osnovna podešenja u okviru zaštitne funkcije su:

- izbor praga reagovanja *I*_{0p}
- izbor vremena zadrške reagovanja.

Zemljospojna zaštita radi na detektovanju nulte komponente struje. Postupak ispitivanja zemljospojne zaštite je identičan ispitivanju kratkospojne zaštite.

I reagovanja	t reagovanja

• Testiranje usmerene zemljospojne zaštite (DEFLPDEF1)

Osnovna podešenja u okviru zaštitne funkcije su:

- izbor praga reagovanja I_{0p}

- izbor vremena zadrške reagovanja

-izbor tri ugla kojima se definiše oblast reagovanja releja (*Characteristic angle, Max forward angle, Min forward angle*).

Usmerena zemljospojna zaštita reaguje na moduo struje i fazni pomeraj između nultog napona i nulte struje. Ponoviti postupak kao prilikom testiranja usmerene prekostrujne zaštite. Prilikom smanjenja ugla, početnu vrednost podesiti na -20°, a prilikom poveća na -160°.

Characteristic angle	Max forward angle	Min forward angle
90°	60°	60°

φ reagovanja za smanjenje	φ reagovanja za povečanje

• Testiranje termičke zaštite (T1PTTR)

Osnovna podešenja u okviru zaštitne funkcije su:

- izbor početne temperature štićenog elementa Øinitial=20°C

- izbor temperature okoline@amb=20°C

- izbor naznačene struje štićenog elementa Iref

-izbor naznačene nadtemperature štićenog elementa $\Delta \Theta_{ref} = 20^{\circ}$ C (nadtemperatura štićenog elementa za naznačenu struju elementa)

- izbor vremenske konstante zagrevanja **T**

-izbor maksimalne temperature štićenog elementa \mathcal{O}_{max} =50°C (temperatura pri kojoj relej reaguje)

Podesiti naznačenu struju objekta na 1 A i vremensku konstantu zagrevanja na 60 s. Struju koja se zadaje koferom podesiti na 1.5 A. Izmeriti vreme reagovanja releja. Nakon toga, povećavati struju za po 0.5 A i meriti vreme reagovanja za svaku od tih struja. Rezultate upisati u Tabelu 4. U tabeli uneti i računsko vreme reagovanja korišćenjem izraza:

$$t_{ra\breve{c}} = T \cdot \ln \left(\frac{\Theta_{final} - \Theta_{initial}}{\Theta_{final} - \Theta_{max}} \right)$$

gde su:

$$\begin{split} & \Theta_{final} = \Delta \Theta_{final} + \Theta_{amb}, \\ & \Delta \Theta_{final} = \left(\frac{I}{I_{ref}}\right)^2 \Delta \Theta_{ref}, \end{split}$$

I-zadana struja na koferu.

Tabela 4: Rezultati merenja i proračunate vrednosti

<i>I</i> [A]			
$t_{mer}[s]$			
$t_{ra\tilde{c}}[s]$			

• Testiranje prenaponske zaštite (PHPTOV1)

Osnovna podešenja u okviru zaštitne funkcije su:

- izbor praga reagovanja U_{0p}

- izbor vremena zadrške reagovanja.

Podesiti napon reagovanja na 60 V i vreme reagovanja na 2 s. Podesiti da inkrement napona bude 0.1 V. Početi od vrednosti 57.7 V i podizati napon koji generiše kofer dok relej ne odreaguje. Zapisati napon reagovanja releja. Izmeriti vreme reagovanja releja.

U reagovanja	t reagovanja

• Testiranje podnaponske zaštite (PHPTUV1)

Osnovna podešenja u okviru zaštitne funkcije su:

- izbor praga reagovanja U_{0p}

- izbor vremena zadrške reagovanja.

Podesiti napon reagovanja na 55 V i vreme reagovanja 1 s. Podesiti da inkrement napona bude 0.1 V. Početi od 57.7 V i polako spuštati napon koji generiše kofer. Zapisati napon reagovanja releja. Izmeriti vreme reagovanja zaštite.

U reagovanja	t reagovanja

• Testiranje zemljospojne zaštite (ROVPTOV1)

Osnovna podešenja u okviru zaštitne funkcije su:

- izbor praga reagovanja U_{0p}

- izbor vremena zadrške reagovanja.

Podesiti napon reagovanja na 30 V i vreme reagovanja 0.2 s. Podesiti da inkrement napona bude 0.1 V. Početi od 28 V i polako podizati napon koji generiše kofer. Zapisati napon reagovanja releja. Izmeriti vreme reagovanja zaštite.

U reagovanja	t reagovanja